Saltar al contenido

python: elimina una columna de un marco de datos de Pandas

septiembre 22, 2021
apple touch icon@2

Mucho esfuerzo para encontrar una solución ligeramente más eficiente. Difícil de justificar la complejidad añadida sacrificando la simplicidad de df.drop(dlst, 1, errors="ignore")

df.reindex_axis(np.setdiff1d(df.columns.values, dlst), 1)

Preámbulo
Eliminar una columna es semánticamente lo mismo que seleccionar las otras columnas. Mostraré algunos métodos adicionales a considerar.

También me centraré en la solución general de eliminar varias columnas a la vez y permitir el intento de eliminar las columnas que no están presentes.

El uso de estas soluciones es general y funcionará también para el caso simple.


Configuración
Considera el pd.DataFrame df y lista para borrar dlst

df = pd.DataFrame(dict(zip('ABCDEFGHIJ', range(1, 11))), range(3))
dlst = list('HIJKLM')

df

   A  B  C  D  E  F  G  H  I   J
0  1  2  3  4  5  6  7  8  9  10
1  1  2  3  4  5  6  7  8  9  10
2  1  2  3  4  5  6  7  8  9  10

dlst

['H', 'I', 'J', 'K', 'L', 'M']

El resultado debería verse así:

df.drop(dlst, 1, errors="ignore")

   A  B  C  D  E  F  G
0  1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  1  2  3  4  5  6  7

Como estoy equiparando la eliminación de una columna con la selección de las otras columnas, la dividiré en dos tipos:

  1. Selección de etiquetas
  2. Selección booleana

Comenzamos por fabricar la lista / matriz de etiquetas que representan las columnas que queremos mantener y sin las columnas que queremos eliminar.

  1. df.columns.difference(dlst)

    Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype="object")
    
  2. np.setdiff1d(df.columns.values, dlst)

    array(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype=object)
    
  3. df.columns.drop(dlst, errors="ignore")

    Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype="object")
    
  4. list(set(df.columns.values.tolist()).difference(dlst))

    # does not preserve order
    ['E', 'D', 'B', 'F', 'G', 'A', 'C']
    
  5. [x for x in df.columns.values.tolist() if x not in dlst]

    ['A', 'B', 'C', 'D', 'E', 'F', 'G']
    

Columnas de etiquetas
Para comparar el proceso de selección, suponga:

 cols = [x for x in df.columns.values.tolist() if x not in dlst]

Entonces podemos evaluar

  1. df.loc[:, cols]
  2. df[cols]
  3. df.reindex(columns=cols)
  4. df.reindex_axis(cols, 1)

Que todos evalúan para:

   A  B  C  D  E  F  G
0  1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  1  2  3  4  5  6  7

Podemos construir una matriz / lista de valores booleanos para cortar

  1. ~df.columns.isin(dlst)
  2. ~np.in1d(df.columns.values, dlst)
  3. [x not in dlst for x in df.columns.values.tolist()]
  4. (df.columns.values[:, None] != dlst).all(1)

Columnas de booleano
Por el bien de la comparación

bools = [x not in dlst for x in df.columns.values.tolist()]
  1. df.loc[: bools]

Que todos evalúan para:

   A  B  C  D  E  F  G
0  1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  1  2  3  4  5  6  7

Sincronización robusta

Funciones

setdiff1d = lambda df, dlst: np.setdiff1d(df.columns.values, dlst)
difference = lambda df, dlst: df.columns.difference(dlst)
columndrop = lambda df, dlst: df.columns.drop(dlst, errors="ignore")
setdifflst = lambda df, dlst: list(set(df.columns.values.tolist()).difference(dlst))
comprehension = lambda df, dlst: [x for x in df.columns.values.tolist() if x not in dlst]

loc = lambda df, cols: df.loc[:, cols]
slc = lambda df, cols: df[cols]
ridx = lambda df, cols: df.reindex(columns=cols)
ridxa = lambda df, cols: df.reindex_axis(cols, 1)

isin = lambda df, dlst: ~df.columns.isin(dlst)
in1d = lambda df, dlst: ~np.in1d(df.columns.values, dlst)
comp = lambda df, dlst: [x not in dlst for x in df.columns.values.tolist()]
brod = lambda df, dlst: (df.columns.values[:, None] != dlst).all(1)

Pruebas

res1 = pd.DataFrame(
    index=pd.MultiIndex.from_product([
        'loc slc ridx ridxa'.split(),
        'setdiff1d difference columndrop setdifflst comprehension'.split(),
    ], names=['Select', 'Label']),
    columns=[10, 30, 100, 300, 1000],
    dtype=float
)

res2 = pd.DataFrame(
    index=pd.MultiIndex.from_product([
        'loc'.split(),
        'isin in1d comp brod'.split(),
    ], names=['Select', 'Label']),
    columns=[10, 30, 100, 300, 1000],
    dtype=float
)

res = res1.append(res2).sort_index()

dres = pd.Series(index=res.columns, name="drop")

for j in res.columns:
    dlst = list(range(j))
    cols = list(range(j // 2, j + j // 2))
    d = pd.DataFrame(1, range(10), cols)
    dres.at[j] = timeit('d.drop(dlst, 1, errors="ignore")', 'from __main__ import d, dlst', number=100)
    for s, l in res.index:
        stmt="{}(d, {}(d, dlst))".format(s, l)
        setp = 'from __main__ import d, dlst, {}, {}'.format(s, l)
        res.at[(s, l), j] = timeit(stmt, setp, number=100)

rs = res / dres

rs

                          10        30        100       300        1000
Select Label                                                           
loc    brod           0.747373  0.861979  0.891144  1.284235   3.872157
       columndrop     1.193983  1.292843  1.396841  1.484429   1.335733
       comp           0.802036  0.732326  1.149397  3.473283  25.565922
       comprehension  1.463503  1.568395  1.866441  4.421639  26.552276
       difference     1.413010  1.460863  1.587594  1.568571   1.569735
       in1d           0.818502  0.844374  0.994093  1.042360   1.076255
       isin           1.008874  0.879706  1.021712  1.001119   0.964327
       setdiff1d      1.352828  1.274061  1.483380  1.459986   1.466575
       setdifflst     1.233332  1.444521  1.714199  1.797241   1.876425
ridx   columndrop     0.903013  0.832814  0.949234  0.976366   0.982888
       comprehension  0.777445  0.827151  1.108028  3.473164  25.528879
       difference     1.086859  1.081396  1.293132  1.173044   1.237613
       setdiff1d      0.946009  0.873169  0.900185  0.908194   1.036124
       setdifflst     0.732964  0.823218  0.819748  0.990315   1.050910
ridxa  columndrop     0.835254  0.774701  0.907105  0.908006   0.932754
       comprehension  0.697749  0.762556  1.215225  3.510226  25.041832
       difference     1.055099  1.010208  1.122005  1.119575   1.383065
       setdiff1d      0.760716  0.725386  0.849949  0.879425   0.946460
       setdifflst     0.710008  0.668108  0.778060  0.871766   0.939537
slc    columndrop     1.268191  1.521264  2.646687  1.919423   1.981091
       comprehension  0.856893  0.870365  1.290730  3.564219  26.208937
       difference     1.470095  1.747211  2.886581  2.254690   2.050536
       setdiff1d      1.098427  1.133476  1.466029  2.045965   3.123452
       setdifflst     0.833700  0.846652  1.013061  1.110352   1.287831

fig, axes = plt.subplots(2, 2, figsize=(8, 6), sharey=True)
for i, (n, g) in enumerate([(n, g.xs(n)) for n, g in rs.groupby('Select')]):
    ax = axes[i // 2, i % 2]
    g.plot.bar(ax=ax, title=n)
    ax.legend_.remove()
fig.tight_layout()

Esto es relativo al tiempo que tarda en ejecutarse df.drop(dlst, 1, errors="ignore"). Parece que después de todo ese esfuerzo, solo mejoramos el rendimiento modestamente.

ingrese la descripción de la imagen aquí

De hecho, las mejores soluciones utilizan reindex o reindex_axis en el truco list(set(df.columns.values.tolist()).difference(dlst)). Un segundo cercano y todavía muy marginalmente mejor que drop es np.setdiff1d.

rs.idxmin().pipe(
    lambda x: pd.DataFrame(
        dict(idx=x.values, val=rs.lookup(x.values, x.index)),
        x.index
    )
)

                      idx       val
10     (ridx, setdifflst)  0.653431
30    (ridxa, setdifflst)  0.746143
100   (ridxa, setdifflst)  0.816207
300    (ridx, setdifflst)  0.780157
1000  (ridxa, setdifflst)  0.861622
close