in

Regresión vs clasificación en el aprendizaje automático

regression vs classification in machine learning

Los algoritmos de regresión y clasificación son algoritmos de aprendizaje supervisado. Ambos algoritmos se utilizan para la predicción en el aprendizaje automático y funcionan con los conjuntos de datos etiquetados. Pero la diferencia entre ambos es cómo se utilizan para diferentes problemas de aprendizaje automático.

La principal diferencia entre los algoritmos de regresión y clasificación para los que se utilizan los algoritmos de regresión predecir lo continuo valores como precio, salario, edad, etc. y los algoritmos de clasificación se utilizan para predecir / clasificar los valores discretos como Masculino o Femenino, Verdadero o Falso, Spam o No Spam, etc.

Considere el siguiente diagrama:

Regresión frente a clasificación

Clasificación:

La clasificación es un proceso de búsqueda de una función que ayuda a dividir el conjunto de datos en clases en función de diferentes parámetros. En Clasificación, un programa de computadora se entrena en el conjunto de datos de entrenamiento y, en base a ese entrenamiento, categoriza los datos en diferentes clases.

La tarea del algoritmo de clasificación es encontrar la función de mapeo para mapear la entrada (x) a la salida discreta (y).

Ejemplo: El mejor ejemplo para comprender el problema de la clasificación es la detección de correo no deseado. El modelo se entrena sobre la base de millones de correos electrónicos en diferentes parámetros, y cada vez que recibe un nuevo correo electrónico, identifica si el correo electrónico es spam o no. Si el correo electrónico es spam, se mueve a la carpeta Spam.

Tipos de algoritmos de clasificación ML:

Los algoritmos de clasificación se pueden dividir en los siguientes tipos:

  • Regresión logística
  • K-Vecinos más cercanos
  • Máquinas de vectores de soporte
  • SVM de kernel
  • Nave Bayes
  • Clasificación del árbol de decisión
  • Clasificación aleatoria de bosques

Regresión:

La regresión es un proceso de encontrar las correlaciones entre variables dependientes e independientes. Ayuda a predecir las variables continuas como la predicción de Las tendencias del mercado, predicción de precios de la vivienda, etc.

La tarea del algoritmo de regresión es encontrar la función de mapeo para mapear la variable de entrada (x) a la variable de salida continua (y).

Ejemplo: Supongamos que queremos hacer un pronóstico del tiempo, entonces, para esto, usaremos el algoritmo de Regresión. En la predicción del tiempo, el modelo se entrena con los datos pasados ​​y, una vez que se completa el entrenamiento, puede predecir fácilmente el tiempo para los días futuros.

Tipos de algoritmo de regresión:

  • Regresión lineal simple
  • Regresión lineal múltiple
  • Regresión polinomial
  • Regresión vectorial de soporte
  • Regresión del árbol de decisión
  • Regresión aleatoria de bosque

Diferencia entre regresión y clasificación

Algoritmo de regresión Algoritmo de clasificación
En Regresión, la variable de salida debe ser de naturaleza continua o valor real. En Clasificación, la variable de salida debe ser un valor discreto.
La tarea del algoritmo de regresión es mapear el valor de entrada (x) con la variable de salida continua (y). La tarea del algoritmo de clasificación es mapear el valor de entrada (x) con la variable de salida discreta (y).
Los algoritmos de regresión se utilizan con datos continuos. Los algoritmos de clasificación se utilizan con datos discretos.
En Regresión, intentamos encontrar la línea de mejor ajuste, que puede predecir la salida con mayor precisión. En Clasificación, intentamos encontrar el límite de decisión, que puede dividir el conjunto de datos en diferentes clases.
Los algoritmos de regresión se pueden utilizar para resolver los problemas de regresión como la predicción meteorológica, la predicción del precio de la vivienda, etc. Los algoritmos de clasificación se pueden utilizar para resolver problemas de clasificación como la identificación de correos electrónicos no deseados, el reconocimiento de voz, la identificación de células cancerosas, etc.
El algoritmo de regresión se puede dividir en regresión lineal y no lineal. Los algoritmos de clasificación se pueden dividir en clasificador binario y clasificador de clases múltiples.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Función Python zip ()

HTML: etiqueta